CEGMON

: a new monitor
for OSI and UK101 BASIC-in-ROM systems

Warranty terms

There is no warranty, either expressed or implied, for CEGMON in any version. CEGMON is
sold subject to the distributor’s standard conditions of sale, copies of which are available on
request. Although it has been extensively tested and is believed to be error-free, there is no
guarantee that any of the software will operate under conditions not noted in this User Guide.

Despite the above, we would be grateful for any comments regarding CEGMON or on any
possible faults which may appear, to help us in developing future versions.

Licensing and copyright terms

: CEGMON and its documentation are protected both by copyright and also by our standard
licensing agreement for software (copies available on request).

In essence, you have baught a 2716 EPROM and associated documentation, and a licence to
use the software contained on or in it for your own purposes on your own computer.

Copying all or any part of the software onto any medium or into any retrieval system and/or
using this on a computer not owned by you is expressly excluded from the terms of your
licence and would constitute a breach of contract.

CEGMON © 1980 George Chkiantz, Richard Elen, Tom Graves
Sold under licence and distributed-by Mutek, Quarry Hill, Box, Wiltshire, England
Documentation prepared by Wordsmiths, 19a West End, Street, Somerset BA16 0LQ

Introduction

CEGMON has been developed to provide you with the kind of firmware support
that you need to get the most out of your computer. When Ohio Scientific wrote
their SYNMON monitor, in the none-too-distant days of expensive ' computer
memory, it is clear that cost was rather more important than flexibility or ‘user-
friendliness’. To save on cost, OSI’s SYNMON 2K monitor chip actually contains
monitors for several different machines, and only a meagre ¥,K is used for each type.
CEGMON uses the full 2K of monitor space. The result is, we Hope, a monitor PROM
that gives your machine more features and flexibility than any computer in the price
range, while retaining the greatest practicable compatibility with the existing
firmware and software. :

Four versions of CEGMON are available: for standard Superboard or C1; enhanced
(32X 48 display) Superboard or C1; UK101; and C2 or C4. In the following notes the
versions are referred to as C1, C1E, 101 and C2 respectively.

The main features of CEGMON are:

O a screen-editor for use with BASIC or assembler programs, linked directly to the
system’s call for keyboard input.

O a revised keyboard routine, giving typewriter-like response, true ASCII key-
values and direct access to most graphics.

O a completely new screen-handler, formatting screen output within user-
definable ‘windows’, with cursor control and direct ‘window’- or screen-clear.

O a full machine-code monitor for development of machine-code routines, which
includes machine-code load and save in auto-start format, input of text or
graphics as well as hex instructions, tabular hexadecimal display of memory
contents, memory mover and breakpoint handler for debugging.

O input and output from BASIC or assembler vectored through RAM, allowing
direct linkage to user-defined 1/0 routines.

O compatible design: entry points of all SYNMON main routines and most
subroutines have been retained; OSl-compatible floppy-disc bootstrap
provided on all versions, to support OSI’s 610 or 470 disc-controller boards.

Start-up

On start-up, the usual array of random ‘garbage’ characters will appear on the
screen. On hitting the BREAK key (RESET — 101), the garbage will be replaced by the
CEGMON ‘D/C/W/M ?’ prompt at the top of a clear screen. As with SYNMON,
answer the prompt with D, C, W or M, to access Disc bootstrap, BASIC Cold start,
BASIC Warm start or Monitor respectively.

Aswith SYNMON, the BREAK reset necessarily resets all the input/output vectors,
and also resets the current ‘window’ for the screen handler to the default values, i.e.
text display on the full screen area. Accidental BREAK may be a nuisance in some
applications, where the vectors or ‘window’ definition are important; it’s probably a
good idea, especially on OSI machines rather than UK101, to insert another switch
in series with the BREAK key — and well out of the way! — to prevent accidental
BREAK.

Keyboard

The OSlI polled keyboard is now decoded in true ASCII format, with one exception:
the RUBOUT key is decoded as $5F (95,,) to allow it to be used as a ‘delete’ key with
OSI’s BASIC or Assembler.

The major change is that keyboard use with SHIFT-LOCK released is rather more
predictable. The two shift keys are now decoded identically; carriage-return (CR),
line-feed (LF), RuBOUT and (not 101) escape (ESC) are all accessible regardless of the
state of SHIFTs or SHIFT-LOCK. Control (CTRL) returns the same value from alphabetic
keys regardless of SHIFT or SHIFT-LOCK — i.e. CTRL-A and CTRL-a both return an ASCII
value of 01; but the state of SHIFT-LOCK is assessed with CTRL for non-alphabetic keys,
in order to access otherwise inaccessible characters in the range $7B-7F (123-127,,).
For the same reason, SHIFT and SHIFT-LOCK pressed together with alphabetic charac-
ters still produce a range of garbage characters, in order to allow sHIFT-K to -O to

raccess the up-arrow and other characters in the range $5C-5F (91-95,,).

The BASIC line-delete, @, is decoded as SHIFT-0 (zero) as before, but not as SHIFT-P.
SHIFT-O still functions as a character-delete, now working as a true backspace/
delete rather than the crude Teletype underscore; but it is simpler to use RUBOUT,
which works regardless of the state of SHIFT or SHIFT-LOCK.

The REPEAT key (not 101} is now used as a second control-key, to access the non-
ASClI graphics in conjunction with other keys. Note that BASIC’s own input routine
masks out most of the control characters and all character-values above ASCI1 $7C
(124,,); however, the masking can be bypassed either by a USR call direct to the
keyboard or editor routine, or through a machine-code ‘stack trick’ via the input
vector, as shown in the program example on page 15.

Another program example shows a non-halting ‘GET’ routine, called by a USR call
from BASIC.

Screen handler

CEGMON’s screen handler is an entirely new design, applying the ‘protected area’
and ‘scrolling window’ concepts of editing terminals to the memory-mapped
display system of OSI’s microcomputers. All output to the screen is via a ‘window’
whose position, height and width are all user-definable, and can be changed simply
and quickly within programs. Four non-destructive cursor-positioning commands
are available, as is a ‘window’-clear command, and also a separate total screen-clear.

On start-up, the ‘window’ is largely identical with the existing formats for C1, C1E,
C2and 101. An obvious difference is that printing starts at the top of the screen, with
a small allowance made for overscan. Scrolling only occurs when the base-line of
the ‘window’ would be exceeded; until this happens, PRINTing on the screen is very
much faster than under SYNMON. In all other respects, though, the start-up
‘window’ performs in much the same manner as under SYNMON, and most existing
programs would not notice any difference.

The cursor controls are as follows:
CHR$(10) cursor down (line-feed)
CHR$(11) cursor right
CHR$(12) cursor home (to top left of ‘window’)
CHR$(13) cursor left to start of line (carriage-return)

While this is not a complete set, these controls will be enough for almost all
requirements. For example, a practical substitute for the PRINT AT command of
some extended BASICs — using cursor-home, cursor-down and cursor-right — is
shown in the plotting routine in the program examples in page 18.

‘Window’-clear is called by CTRL-SHIFT-N (CTRL-‘up-arrow’), CHR$(30). This clears the
current window and homes the cursor location, but does not print the cursor. By
changing ‘windows’, it is very easy to blank areas of the screen selectively without
recourse to the ‘POKEs into the screen within FOR:NEXT loops’ programming
demanded by SYNMON. The screen can be cleared completely by CTRL-Z,
CHR$(26); this also homes the cursor to the top left of the current window.

Programming with multiple ‘windows’ is simple in principle, but you will probably
need a working knowledge of the screen memory map and a little practice in order
to use it to its fullest extent. The definition of the current ‘window’ is held in five
consecutive memory locations, from $0222-0226 (546-550,); their values are copied
into various other locations during printing, scrolling, ‘window’-clear and cursor-
home operations. The values at start-up are as follows:

Store name and contents location C1 C1E C2 101

SWIDTH column width (1) $0222 546,, $17 23,, $2F 47, $3F 63, $2F 47,
SLTOP low byte of TOP $0223 547,, $85 133,, $80 128,, $80 128,, $0C 12,
SHTOP high byte of TOP $0224 548,, $DO0 208,, $DO 208,, $DO 208,, $DO 208,
SLBASE low byte of BASE $0225 549,, $85 133,y $40 64, $40 64,, $CC 204,

SHBASE high byte of BASE $0226 550,, $D3 211,, $D7 215,, $D7 215, $D3 211,

These values, and thus the definition of the current ‘window’, may be changed at
any time within a program.

The width, as defined by SWIDTH, may be changed on its own; but the others
should be changed as a set, to avoid the risk of printing at random into system
memory. Within BASIC, the simplest way of doing this is to define a two-
dimensional BASIC array, such as WI{W,X), where W is the ‘window’ number, and X
points to each of the store locations. The ‘window’ is then set by a GOSUB call,
depending on the current value of W:

FOR X=0TO 4
POKE 546+X, WHW,X)
NEXT

PRINT CHR$(12); REM - homes the cursor after setting ‘window’
RETURN

Even on a 1MHz running speed, this will change the ‘window’ in around 15 milli-
seconds — less time than a single raster scan on the monitor. A fuller example of the
routine’s use is given in the program examples on page 18. It’s generally best to
home the cursor after resetting the ‘window’, else at least the first character, and
probably more, will be printed ‘trailing’ on the previously-defined text line. Cursor-
home (CHR$(12)) resets the text-line pointer to the top of the new ‘window’; and
screen-clear (CHR$(26)) and ‘window’-clear (CHR$(30)) both home the cursor on
completion, but do not print it. If you want text to start further down, you can either
print a string of line-feeds (CHR$(10)), or reset the text-line pointer separately. Its
two locations are:

LTEXT $0228 55549 low byte of text-line start
HTEXT $022C 55649 high byte of text-line start

The width stored in SWIDTH is one less than the number of characters printed per
line. The value must be less than the nominal width of the screen memory (32,,0n
C1, 64,, on all others), or else the scroll will not perform correctly (try it!). Above a
value of 127, in SWIDTH, the screen handler will not function at all — if you wantto
experiment, be careful! SWIDTH also determines the scanning width of the edit
cursor — see the section on Editing later.

In setting the TOP and BASE pairs, check first that BASE is below TOP on the screen
(i.e. has a higher memory address), and that they are in line with each other on the
memory map. If BASE is higher than TOP on the screen, the result will be a two-line
scrolling window starting at TOP. If TOP and BASE are out of line with each other,
the column width will start as defined by TOP, and all will appear to function
normally, except that scroll and ‘window’-clear will finish one line higher or lower
than BASE.

Note that scrolling and clearing operate on TOP and BASE inclusive — TOP thru
BASE. A clear, for example, will run from TOP to BASE-+SWIDTH inclusive, in a
column SWIDTH+1 characters wide.

No check is made to ensure that TOP and BASE are within the screen memory —
they can print to anywhere within memory. While this does mean that their values
must be set with care — as with any POKE instruction — it also means that any
memory-mapped device can be accessed by the screen handler, and can be
PRINTed to by BASIC, by defining a ‘window’ in the same way. Examples of this are
in PRINTing colour values direct to the C4’s colour memory, or PRINTing to an
additional display or high-resolution graphics board.

The print speed before scrolling occurs is extremely fast — around 250 cycles per
character, giving ascreenful from BASIC in well under a second even on a1MHz C2.
The scroll speed for a full screen width is almost identical to SYNMON:’s, but
proportionately faster as the width of the column to be printed is reduced. Printing
speed can be slowed as before by POKEing 518, ($0206) with a delay value from1to
255.

Machine-code monitor

CEGMON’s machine-code monitor has been designed specifically to simplify the
development of short machine-code routines, especially those intended to link to
BASIC. While it is not as comprehensive as OSI’s Extended Monitor (ExMon), it can
be co-resident with both BASIC and Assembler, and is immediately available
without loading tape — a great advantage for educational users. We expect it to be
most useful for developing short routines of up to thirty or so lines, and for testing
and debugging larger routines being developed with the Assembler.

This section does assume a basic knowledge of the principles of machine-code
programming for the 6502 (the monitor will provide the practice!). Three useful
reference books are:

Programming the 6502, Rodnay Zaks (Sybex) — good and mostly complete
introduction to the 6502, but earlier editions had a few important inaccuracies.

6502 Assembly Language Programming, Lance A. Leventhal (Osborne/McGraw-
Hill) —solid, full of examples of programming for internal routines and 1/0 through

4

PlAs, VIAs, ACIAs etc., in assembly mnemonics. Beware the unusual page-
numbering!

6502 Software Design, Leo]. Scanlon (Blacksburg) — many practical examples,
mostly based around the AIM65 system, but still useful.

On start-up via ‘M’, the monitor’s prompt — a >’ — appears after the screen is
cleared. At this point the monitor is in its address/command mode, and normally
expecting input from the keyboard. The commands available are:

/ jump to data mode, leaving current address unchanged.

‘do nothing’ — loop back to get address.

L sets load flag — calls for input from the BASIC load vector at $FFEB.

$ save machine code.

Mdo memory block move.

T do tabular dump/display of memory contents.

Z set a breakpoint.

R restart from a breakpoint.

U jump to user routine.

If none of these are given as areply, the system expects four hex digits to make up an
address (see Error-handling later). On completion of the address (the ‘current
address’), the system prints a‘/’, then the contents of that address as a hex pair,and a
space. The system is then in the data mode loop, and the following commands are
available:
return to address mode.
re-open current address, to correct a mis-type.
start execution at the current address.
enter text entry loop.
» increment current address.
LF (line feed) — increment current address, do CR/LF,
display new current address and contents on next line.
CR (carriage return) — as for LF, but do CR only;
display by overwriting on same line.
~ (up-arrow, SHIFT-N) — as for LF, but decrement current address.
Otherwise the system expects both digits of a hex pair, stores the complete byte at
the current address, and loops back to the start of the data mode for a new
command or value.

A~

Command/address mode:

/ jump to data mode
On start-up the current address is set to $0000; thereafter it is not changed on a
restart, such as on an error recovery.

L load

The machine-code load flag at $B is set; the system then restarts at the beginning of
the data mode loop. It then expects input from the ACIA — either from tape.orfrom
an RS-232 serial interface — in the old SYNMON format of *.’ to define address, */’ to
define data, data transmitted in the form of hex pairs separated by a CR, and
concluded by ‘", an address and ‘G’ for an auto-start. The only difference from
SYNMON’s load is that the former contents of the current address are displayed on
the current line as well as the address and its new contents. The load loop canrunat
up to 4800 baud on a TMHz machine.

Note that normal error-checking is disabled during load — see Error-handling
below — and that the system will not accept input from the keyboard until the load
flag is cleared, either in your program, or by a re-entry into the monitor’s command-
mode. As with loading tapes for BASIC or Assembler, loading can be halted by
hitting the SPACE bar; the monitor then restarts in its command mode, with normal
error-checking resumed.

§ save
Syntax:.Saaaa,bbbb>cccc where aaaa is the start address of the code to be saved,
bbbb is the last address inclusive of the code, and ccccis the restart address — either
to the beginning of the routine for autostart, or to the monitor for further work (see
List of locations, routines and subroutines later). Code is saved from aaaa to bbbb
inclusive — aaaa thru bbbb; the routine automatically provides the ‘,’ and >’
prompts. It then waits until the RETURN key is pressed on the keyboard — to give you
time to start your recorder — and then prints out the code in the SYNMON load
format. (It will start after any key is pressed; but RETURN is advised, since it will also
output ten nulls to the tape before the actual ‘save’ starts). The ‘start’ and ‘go’
addresses and hex codes are displayed on the screen; the CR which separates each
data byte, however, is output direct to the ACIA. As a result, this routine is not fully
vectored for user-defined output — it can only be used through the ACIA, to
cassette port or RS-232 interface.

On completion of the save, the BASIC save flag is cleared, and the system restarts
in the command mode.

M memory block move

Syntax: .Maaaa,bbbb>cccc where aaaa is the start of the code to be moved, bbbb
is the end inclusive — aaaa thru bbbb — and cccc is the new start location. The
routine does not erase the code at the previous locations, though it may over-write
it if the new locations overlap the old. If the new start is between the old start and
end addresses, it will over-write the remaining code before it has been copied — if
you need to do this kind of move, copy to a ‘safe’ area first, and then copy back to
the new area.

T tabular display
Syntax: .Taaaa,bbbb where aaaa is the start address of the code to be displayed,
and bbbb is the last address inclusive — aaaa thru bbbb. The *,’ prompt is supplied by
the routine. The contents of the memory are displayed as a table of eight-byte
blocks (sixteen-byte blocks — C2), each block preceded by the address of the first
byte of the block (on C1s, the address is printed between each line of the table). If
you want to display more than a screenful, it’s advisable to slow the print speed
down by placing a delay value in $0206 before calling the T routine; to send the
display out to a printer, set the OUTVEC ‘save’ flag at $0205 to $FF before you start.
On completion, the system restarts in the command/address mode, displaying
the >’ prompt.

Z zero — set a breakpoint
-Syntax:.Zaaaa where aaaa is the address at which the breakpoint is to be inserted.
Z sets up at $07C0 (OSI’s IRQ/BRK address) the pointer to CEGMON’s breakpoint
handler; saves the current contents of the chosen address in BRKVAL; and replaces
it with a BRK opcode ($00). Note that a breakpoint cannot be set at any ROM
address! — see Using breakpoints later.

The routine then exits back to the command mode, displaying the >’ prompt.

R restart from breakpoint .

Collects its start address and the contents of the registers, processor status and stack
pointer from the break-table, and restarts the program at that address by executing
an RTlinstruction — see Using breakpoints later. Inappropriate use of R will usually
cause a system hang-up or crash — it should only be used to restart from a break-
point.

U jump to user routine

Causes the system to ‘jump-indirect’ to a routine whose start address is held in
$0233-34 — the low byte of the address in $0233, the high byte in $0234. Useful for
calls to regularly-used locations like the Assembler restart, or where the ‘current
address’ should be left unchanged.

Data mode:

. exit to command/address mode

When in the data mode, ‘" must be typed before calling for any of the command
mode’s commands or for a new address. If it is forgotten, the command mode’s
command letters will be treated as errors; while the intended new ‘address’ will be
treated as two hex pairs, the second overwriting the first at the unchanged current
address!

/ re-open current address

Leave current address unchanged, to place a new value at the current address —
used if the value just typed was incorrect.

G ‘go’

Sets all registers to $00, and starts execution at the current address. Usually used with
the syntax .aaaaG — but make sure that the . command precedes the aaaa address!

’

start text mode

The text mode expects ASCII text rather than hex digits. Control characters such as
the ‘window’-clear and cursor controls, and also graphics characters, can also be
typed direct into memory. Where the text is to be printed to screen later via the
BASIC output vector (OUTVEC), errors may be corrected by RUBOUT, but both it and
the character it ‘deletes’ will be stored in memory; otherwise no editing is possible
without exiting back to the data mode. Each new character is stored directly and the
current address is incremented.

A second ‘"’ will exit back to the data mode on the same line; a*, will be printed
after it, for clarification, but the current address will not be further incremented.
The text-entry mode can also be exited by typing a CR (carriage return); this returns
to the data mode, but printing on the next line, displaying the updated current
address and its contents.

» increment current address _

Used to space succeeding entries into memory. If more than one *, is typed, the
current address will be incremented accordingly, and the contents of the ‘skipped’
addresses will be left unchanged. ‘

LF line-feed - increment current address, display on next line

This is the same as on OSI’s ExMon — the current address is incremented, a CR/LF
(carriage-return/line-feed) is issued, and the new current address and its contents
are displayed on the next line.

CR carriage-return - increment current address, display on current line

This differs from OSI’s ExMon, where CR is used to exit to the command mode. Its
use here is mainly to allow fast tape load without scrolling; it isidentical to LF, except
that a carriage-return only (without line-feed) isissued. See also the use of CR in the
“’” (text) mode above.

~ up-arrow (SHIFT-N) - decrement current address, display on next line
This is the same as in ExMon. The routine is identical to LF, except that the current
address is decremented rather than incremented.

Using breakpoints
Breakpoints are a useful part of the debugging toolkit formachine-code work. They
force the program execution to halt, rather like the STOP command in BASIC. In
CEGMON’s case, the halt then presents the system registers for view and alteration
as required.

In the 6502 processor, the breakpoint is forced when the processor executes a
BRK instruction, opcode $00; so breakpoints are set by overwriting an existing

instruction with a BRK opcode. CEGMON does this with the Z command: a $00 is -

stored at the chosen address, and the current contents are saved, to be restored by
the breakpoint handler when the breakpoint is hit. There are two restrictions on
setting breakpoints: first;that the BRK instruction must replace an instruction byte,
since if it is placed in the data or address bytes of an instruction, it will simply be
treated as part of that data or address; and second, that since the breakpoint is set by
replacing the existing instruction byte with BRK, breakpoints cannot be set at ROM
addresses. Only one breakpoint can be set at a time, and is automatically cleared by
the breakpoint handler after hitting the breakpoint.

To test a program by using breakpoints, set a breakpoint at a likely location, and
start the program running with a .aaaaG or U command. If nothing different
happens, or if the program hangs up, either the breakpoint was never reached, or
was set incorrectly and interpreted as data or address. When the program hits the
breakpoint, a check is made that this is a BRK and not an IRQ interrupt (which is
ignored); the registers and corrected program counter (see Zaks, p.111, 235;
Leventhal, 14-2, 3) are saved in atable; the previous opcode is restored at the break-
point, replacing the BRK opcode; and the routine then jumps to the monitor data-
mode loop, pointing to the beginning of the break-table. What you will see on the
screen is a CR/LF done, followed by

00EQ/aa
where aa is the contents of the A register at the time the breakpoint was reached.

$00E0 is the beginning of the break-table — the same as ExMon’s. You can then
use the data mode loop to examine and/or modify the registers and program
counter. They are stored as follows:

00EQ A register — accumulator

E1 X register

E2 Y register

E3 P register — processor status flags, in hexadecimal form

E4 K register — stack pointer

E5 PCL — low byte of program counter

E6 PCH — high byte of program counter
The address shown by E5 and £6 should be the same as the breakpoint address that
you set; if not, you have a loose BRK in your program somewhere!

8

« M < 4

[3

L5

While in the data mode, you can change these values; you can also exit as usual to
the command mode to set another breakpoint — or reset this one — with the Z
command. When you've finished, and want to restart, type .R (don’t forget the *.’1).
This collects the registers’ values and the program counter from the break table, and
restarts execution. If you’ve only looked at the break table, without changing any
values, the program will simply carry on where it left off, as if nothing had
happened, and will do so until it finds another breakpoint or reaches its own
conclusion.

One minor problem does occur when testing programs with the Assembler still in
memory, such as after an A3 assembly. The Assembler uses BRK as ‘return to
command-mode’ statement; setting a breakpoint via CEGMON’s Z command will
over-write the Assembler’s own jump and cause it to ‘return’ to CEGMON when
you restart it after testing your routine. If you are working with the Assembler, note
down the contents of $07C0-07C2 before setting any breakpoint with Z, and restore
them before restarting the Assembler.

Error handling

CEGMON’s error handling in the machine-code monitor is similar to that in OSI’s
ExMon. In the command mode, only the first letter after the >’ promptora“’
command may be a command letter; thereafter, only hex digits are allowed until a
complete four-digit hex address is built up. The same applies within the commands
themselves — only complete four-digit addresses are allowed, as the syntax given
for each command shows. (Note that the system supplies any ‘,” or >’ prompts).
Within the data mode, excluding its text input mode, the same applies: the first
character in each time round the loop after a previous instruction or value may be
an instruction, such as ‘" or LF; thereafter, the system expects hex digits to make up
hex pairs. A “.’ or ‘/” may be typed at any time, to exit back to the command or data
modes (but note that this will leave a part-complete address or data-byte only partly
rotated into place, and almost certainly incorrect). All other characters are invalid.
Within the text entry mode, no characters are invalid; the only restricted characters
are *”" and CR, which exit back to the main data mode loop.

During text entry from the keyboard, invalid characters will be printed, but
immediately followed by an ‘?” and CR/LF, and the restart®>’ prompt. You are then
back in the command mode. The current address, however, is unchanged, as can be
seen if you then re-enter the data mode by typing a‘/’. Control characters like CTRL-
Z — to clear the screen — are recognised, but are decoded as errors on completion;
CTRL-Z clears the screen, but a ‘?” and the >’ prompt are then printed.

During a tape load, this error checking is disabled. The inevitable ‘glitch’ charac-
ters that precede the start of each record on cassette would halt the load before
anything had been loaded if this was not done. This does leave the load open to
errors. However, if a digitis invalid it is simply ignored; the following CR bumps up
the current-address counter as normal, and only the contents of that address are
affected. If a CR is lost, the addresses will be out of step with the data. Normal error-
checking is resumed only when the load-flag at $FB is cleared. As mentioned earlier,
this is done automatically by the system at the entry to the command mode, and also
if the sPACE bar is hit during load; it is also cleared by aBREAK reset. If your program
auto-starts without entering the monitor’s command mode, you will need to clear
the flag by storing a null ($00) in it.

On short programs a load can be checked simply with the T tabular display; on

9

larger programs a checksum loader should probably be bootstrappedin, as on OSl’s
ExMon and Assembler — although we have found OSI’s own checksum loader to be
less reliable than a straight load! The digit-by-digit load format is surprisingly
reliable with a reasonable tape and tape recorder: when testing CEGMON we used
it to save the Assembler and the CEGMON source code — more than 20K in all —
and re-loaded it at 4800 baud into a C2, with no detectable errors.

Editing

Two types of editing are available within CEGMON: limited in-line editing, using
RUBOUT; and screen editing, using a second cursor. The backspace or RUBOUT
routine is linked mainly to CEGMON’s screen-handler; the screen editor replaces
the call to the keyboard routine in the BASIC input vector’s routine, and the key-
board is called through it.

The screen-editor is available for any program which calls for input via the input
vector at $FFEB — which includes not just BASIC but OSI’s Assembler and ExMon as
well. However, neither form of editing is available in CEGMON’s machine-code
monitor: the keyboard routine is called direct, in order to maintain compatibility
with SYNMON and to dvoid internal incompatibility problems; while RUBOUT is
treated simply as another invalid character in both command and data modes. In the
data mode, you can re-open the current location with ‘/’; otherwise, if you see a
mistake, it's simplest either to restart the command or data by typing ‘.’ or/’, or else
to crash it deliberately by hitting the SPACE bar, thus restarting in the command
mode. Editing isn’t really practical or necessary in the monitor; and even the longest
command is only just over a dozen keystrokes, after all!

As mentioned earlier, RUBOUT is actually decoded as $5F (ASCII underscore) rather
than $7F, the true ASCII DELETE. On pressing RUBOUT, the character immediately to
the left of the cursor is deleted, and the cursor backspaces into its space; if the
beginning of the line is reached, the cursor will skip to the end of the previous line,
as defined by SWIDTH. In principle, it will continue doing this as long as RUBOUT is
pressed, until it reaches the beginning of the top line of the current ‘window’,
where it will stop. In practice, when linked to BASIC, it will backspace up to the
beginning of the current program line, or to the ‘2’ of an INPUT request from BASIC.

At the same time, it will normally delete the last character typed in BASIC or the
Assembler. But there are some difficulties, particularly in BASIC, because OSI’s
BASIC-in-ROM was originally intended for use with Teletypes, not video systems —
hence the careful storing of the character count and terminal width in 14, and 15,,
respectively. These two locations, and the ‘hangover’ from Teletype days, cause two
problems with RUBOUT in BASIC.

The first comes if you overshoot the buffer by typing more than 72, charactersin
one go — you then see a ‘half-battleship’ on OSI systems. This is CTRL-G, the ASCII
BELL code. On Teletypes, this is a non-printing character — it rings the bell. But on
video systems — all those involved here — it is printed, but not stored in the buffer,
since there is no room for it. RUBOUT will then delete the last valid character from the
buffer — the last before any ‘half-battleships’ — but will delete the last ‘half-
battleship’ rather than the relevant character from the screen: the backspace will be
out of step with the true delete. Getting round this problem completely would cost
about as much code as the entire editor, and would make editing incompatible with

10

- .

anything other than BASIC — and we prefer to keep CEGMON as flexible as
possible. If you get caught out in this way, by over-running the buffer, use RUBOUT
with care; then LIST the relevant line, and edit it as required with the screen editor.

The other problem is more a matter of habit, particularly for owners of
Superboards or UK101s with overscan problems on their display. If you’ve been in
the habit of limiting the display width by limiting the terminal-width value (i.e.
POKEing 15 with, say, 22 rather than the default value of 72) — DON’T! Limit the
display width by POKEing the same value into SWIDTH — i.e. POKE 546, 22. The
reason is the same as with the BELL code: if you limit the terminal width, the
backspace will get out of step with the true delete, because while the characters
displayed are linked to terminal-width, the backspace is necessarily linked to
SWIDTH. As long as the terminal-width value in 15 ($0F) is greater than SWIDTH, no
problem will arise. ‘Terminal width’ should still be used to define the line-length of
output to a printer or terminal.

The screen editor is directly linked to all the usual calls for keyboard input. The
editor itself is turned on or off by typing CTRL-E; when turned off, the keyboard
returns a character exactly as under SYNMON, as though the editor did not exist.
Whenever the editor is turned on from the keyboard, the edit cursor — a white
square — appears at the beginning of the current line. The editor can also be turned
on or off within programs by POKEing the edit flag at 516,,, $0204 — POKE 516, 255
turns the editor on, POKE 516, 0 turns it off. You can also set the start-position of the
edit cursor within programs by POKEing values into its store locations: CURSLO, at
561, ($0237), holds the low byte of its address, and CURSHI at 562, ($0232) holds the
high byte. The edit cursor can be moved around on the screen with the following
keys:

CTRL-A (CTRL-a) left

CTRL-S (CTRL-s) up

CTRL-D (CTRL-d) right

CTRL-F (CTRL-f) down
While editing, the values of these are not sent out to the calling routine (e.g. to
BASIC) at all — they are solely used to move the edit cursor. The cursor ‘wraps

round’ if it is moved off the screen vertically, and is not limited to the height of the
current window; its movement horizontally, however, is limited to the width of the
current ‘window’” as defined by SWIDTH, because of yet more difficulties caused by
BASIC’s terminal-width values. For this reason, you’ll probably find it best to set
SWIDTH to the full visible screen width when editing.

As you move the edit cursor around, the character beneath it at each moment is
stored, and replaced when the cursor moves away. If you then press the Esc key (or
CTRL-Q on UK101), the character ‘beneath’ the edit cursor is copied to the main
cursor, and sent out to BASIC, the Assembler or whatever; both cursors then move
one place to the right. Entire lines — up to the limit of the BASIC or Assembler input
buffers — can thus be copied by tsc from anywhere on the screen.

Since any key other than the editor’s control-keys can be typed as usual, being
printed by the main cursor, a wide variety of editing is possible. A mistyped line can
be copied up to the mistake; the mistake corrected by typing; the old mistake
skipped by the edit cursor; and the remainder of the line copied again. A mistakenly
deleted line can simply be copied back into the program as long as the line s still on
the screen. Lines can be renumbered or re-ordered simply by re-typing the line
number and copying the rest (though the old line will still be there until it is

11

deleted). A program that has gone ‘out of memory’ can be copied line by line,
converted to multiple statements wherever possible, and skipping every un-
necessary space. And by changing the ‘window’-definitions — as is shown in the
program examples — a group of lines can be LISTed, protected in a non-scrolling
area, and copied as required into a new program. Program conversions between
different machines become simple, too, for only the machine-specific parts —
usually screen and keyboard values and a few POKE locations — need be changed in
each line.

Input/output

Except in the machine-code monitor, all input and output in CEGMON is through
BASIC’s vectors at $FFEB-FFF9. Since these all call their routines via JMP-indirect
calls through further vectors stored in a table in page 2, from $0218-0221, any special
input or ouiput routines for printers or special programming purposes can be
linked directly to BASIC or elsewhere by changing the vectors in the table in page 2.
The program examples show two routines — a program to skip BASIC’s masking of
control and graphic characters on input; and a TRACE routine called by BASIC, via
its CTRL-C check vector, between the execution of each BASIC statement.

In the machine-code monitor, neither load, save nor keyboard input are
vectored, simply to maintain compatibility with OSI’s original system. All output to
the screen, however, does go through the BASIC output vector, and can be sentto a
printer or whatever simply being setting the BASIC ‘save’ flag at $0205 to 07.

The input and output vectors are as follows:

Page $FF vector through normally points to locations/contents in decimal
INVEC $FFEB $0278-19 INPUT $FB46 536 - 70 537 - 251
OUTVEC $FFEE $021A-1B OUTPUT $FF9B 538 - 155 539 - 255
CCVEC $FFF1 $021C-1D CTRLC $FB94 540 - 148 541 - 251
LDVEC $FFF4 $021E-1F SETLOD $FE70 542 - 112 543 - 254
SVVEC $FFF7 $0220-21 SETSAV $FE7B 544 - 123 545 - 254

N\

Compatibility and conflicts

OSI’s system software, as represented by its BASIC, Assembler, ExMon and
SYNMON, was clearly not designed as a system at all. The Assembler and BASIC
cannot be co-resident, and ExMon’s disassembler crashes BASIC by overwriting the
tail-end of BASIC’s all-important memory scan subroutine (from $00BC to $00D3).
BASIC’s keyboard buffer starts at $0073, the Assembler’s at $0080. And so on. In
designing CEGMON, one of our main concerns was to build a monitor that could
co-exist with all of these conflicting requirements and still contain the kind of
features we wanted.

Apart from the difficulties over BASIC’s terminal width and character-counter,
the other major problem is with the use of zero-page stores. Apart from SYNMON’s
five locations at the top end — $FB-$FF — only one pair is reasonably ‘safe’, and even
that is used as'a temporary store by the Assembler. The $E4-E5 pair is thus used in

12

four ways by CEGMON: as a temporary pointer for the edit cursor, but only during

each call to the keyboard; as a temporary store for the ‘go’ address of the machine-

code save, but only during the actual save; as the store for the ‘new start-of-block’
address during a memory block move; and as part of the break-table, for the stack-
pointer and PCL contents. This is another reason why the keyboard is called direct
by CEGMON’s machine-code monitor. The only time when the ¢onflict may be
important is when you are both testing and saving a routine with the Assembler still
in memory, such as after an A3 assembly to memory. The $F9-FA pair is also used by
CEGMON as a temporary store for addresses during screen-clear, tabular display,
save and block move.

The other important point is that CEGMON uses some of the old ‘free RAM’ starting
at $0222: up to $022E for the screen handler’s store-locations and subroutines, and
to $0232 for the editor’s stores. The monitor U command jump vectors through the
$0233-0234 pair, so the ‘free’ RAM under CEGMON starts at $0235, 565,,. Programs
written to start at $0222 can still be run on CEGMON, though only with the editor
disabled and the old screen-handler called instead of the new.The edit flag at $0204,
516,, must contain 0, and CTRL-E must not be typed at any time, or the edit-cursor will
be written at random into memory, probably causing a program crash. The old
screen handler may be called by changing the output vector: POKE 538, 149 enables
output through the old screen handler at $8F2D on OSI machines, while POKE 538,
155 enables output through the new routine. (When returning to the new handler,
it’s a good idea to home the cursor with CHR$(12) or one of the screen-clear calls).
Note that a BREAK reset will not only reset the vector to point to the new screen
handler, but also over-write the RAM area up to $0234 — so you may need to disable
BREAK as well. No problem will arise with either the Assembler or ExMon, since the
cassette versions of both of these start higher up in memory.

Under the OS-65D disc operating system, the entire RAM from $0200 is used; 65D
has its own 1/0 routines, and ignores those normally used by BASIC-in-ROM.
CEGMON contains a bootstrap to boot up 65D, but from then on 65D is self-
contained, and CEGMON’s special features like the editor and screen handler are
ignored. Patches for 65D, to enable it to use CEGMON’s editor and screen-handler,
will be made available shortly.

Locations, routines and subroutines

The following is a list of various useful points within CEGMON. As can be seen, the
locations of the SYNMON equivalents have in general been retained; but note that
in most cases the way in which they work will be somewhat different — output to
display in the machine code monitor goes via the screen-handler rather than direct
to screen memory, for example. One other important point is that, within the
machine-code monitor, the Y register is always reset to zero, and most of its routines
assume this to be the case — beware of this if you use these routines in your own
programs.

Locations

For break-table locations — 00E0-E6 — and their functions, see p.8.

BTABK 00E4 part of break-table, but also used as a pair to store ‘go’ address in durin

BTABCL 00E5 save; new block start address in move; and edit cursor location during eac
call to keyboard. ’

13

store for opcode moved by Z when setting a breakpoint.
store for ‘to’ addresses in save, move-and tabular display — see NOTEND.

store for current data during data mode and most other routines.

store ‘current address’ for most routines — the ‘from’ address in save, move
and tabular display.

location for IRQ/BRK jump; set to ‘JMP $FA4F’ by Z.

cursor displacement on current line.

stores current character during SCREEN; exits containing char ‘beneath’
the cursor.

park for new char for SCREEN. .

BASIC load flag: 00 - no load; FF - load from ACIA.

EDITOR flag: 00 - disable edit cursor; FF enable edit cursor.

BASIC save flag: 00 - skip save; 07 - enable save to ACIA.

print-delay value for SCREEN; delay is delay-value times approx. 400
machine-cycles (i.e. times 400 micro-seconds at TMHz).

auto-repeat counter for GETKEY.

returns from GETKEY with final ASCII value of key.

pre-shift value of last key left here by GETKEY to test auto-repeat.
BASIC cTrL-C flag: 00 - enables cTRL-C break; 07 disables CTRL-C break.
edit-cursor, displacement from start of editor’s current line.

store for char ‘beneath’ edit cursor.

contain start of edit cursor’s current line on screen.

contain location of start of user routine called by machine-code monitor’s
U command.

start of BREAK/RESET routine.

‘reset’ entry to m/c monitor — reset stack, vectors/pointers, clear decimal
mode. Recommended re-entry point for auto-load m/c tapes.

non-reset entry to m/c monitor — clear screen, zero ‘current address’.
entry to command/address mode.

entry to data-mode loop — prints ‘current address’ and its contents.
start of m/c save routine.

entry to disc bootstrap (at F700 on C2).

BASIC input routine — get a char from keyboard or ACIA.

General output routine, to SCREEN and ACIA.

As for output, but screen-handling done by $BF2D rather than SCREEN.
outputs ten nulls to ACIA.

BASIC’s c1rL-C check — called between execution of each BASIC statement.
sets BASIC load flag, clears save flag; decrements load flag to set it.
sets BASIC save flag.

collects char from ACIA; exits via EDITOR if SPACE hit.

output to tape (BF15 on C2).

initialise ACIA (BF22 on C2).

clear entire screen; exits with X and Y registers zero.

new screen handler.
checks if top or base of screen overshot —if Y =0, carry clear if top overshot,
if Y=2, carry set if base overshot.

BRKVAL 00£7
LOTO 00F9
HITO 00FA
STORE 00FC
LOFROM 0OFE
HIFROM 00FF
DOBRK 01C0
CURDIS 0200
OLDCHR 0201
NEWCHR 0202
LDFLAG 0203
EDFLAG 0204
SVFLAG 0205
SDELAY 0206
COUNTR 0214
SCRTCH 0215
LSTCHR 0216
CCFLAG 0212
DISP 022F
CURCHR 0230
CURSLO 0231
CURSHI 0232
USERLO 0233
USERHI 0234
Main entry points
RESET FFOO
NEWMON FE00
MENTRY FEOC
MSTART F97E
DATALN FA2E
SAVEMC FA7E
DISK FCo00
Subroutines
INPUT FB46
OUTPUT FF9B
OLDSCR FF95
TENULL FFAC
CTRLC FB94
SETLOD FE70
SETSAV FE7B
TAPIN FB57
TAPOUT FCB1
RSACIA FCA6
SCNCLR FE59
SCREEN F836
ENDCHK FBCF
SCOUT FF8C

CURHOM FFD1

14

print char at cursor location. .
resets TEXT line pointer to TOP; do STX $0200 to reset cursor at TOP.

EDITOR FABD entry to screen editor — see main text, p.11.

GETKEY FDOO wait till key pressed, return with ASClI value in A register.

KEYWRT FCBE write-to-keyboard invert for C1 (F7BE on C2).

KYREAD FCCF read-A-from-keyboard invert for C1 (F7CF on C2).

KEY2XR FCC6 read-X-from keyboard invert for C1 (F7C6 on C2).

KDELAY FCDF approx. 6500 cycle delay; exits with X and Y registers zero (F7DF on C2).

DELAY2 FCET approx. (400 X Y-register) cycles delay (F7E7 on C2).

TRIQAD FFBD collect three addresses: first stored in (FE) pair, second in (F9), third in (E4).

TWOQAD F9A6 collect two addresses: first stored in (FE) pair, second in (F9).

GETQDE F9B5 collect address, store in (FE). Note: call GETNEW first!

GETPRC F9BE collect hex pair for data byte, store in FC. Note: call GETNEW first!

GETNEW FE8D get new char; print it to display before returning.

GETCHR FEE9 get char from keyboard or ACIA.

MCACIA FE80 get char from ACIA, strip off any top bit before returning.

ASCHEX FE93 strip ASCII digit to hex; set to 80, if not hex.

ROLSTR FEDA roll new nibble into (FE) if X=2, or into FC if X=0.

ADVTOD FEAC print address in (FE), space, value in FC to display.

QDDATD FEB6 print address in (FE) to display.

PRDATD FEBD print data byte in FC to display.

HEXOUT FECA strip byte in A register to lower nibble; print nibble as ASCII hex to display.

PRBYTE FEFO print data at ‘current address’ pointed to by (FE) to display. Assumes Y=0!

CRLF FBF5 print carriage-return/line-feed to display.

SPCOUT FBE6 print ASCII space to display.

BUMP FEF9 increment ‘current address’ at (FE).

NOTEND FBEB compare (FE) with (F9); carry clear if (FE) is less.

SWAP FDE4 memory block move. Expects start address in (FE), end address in (F9), new
start of block in (E4); assumes Y=0.

Program examples and ideas

Routine to bypass BASIC input masking
As mentioned earlier, BASIC’s input routine masks out most of the control and
graphic characters. If want to be able to send cursor contrals, graphics for display
and the like to BASIC — from keyboard or tape — BASIC’s masking has to be
bypassed. A USR call to the keyboard, as the next example shows, bypasses the input
routine entirely; while this example changes the input vector to point to an
‘unmasking’ routine, allowing input of the ‘non-standard’ characters from tape.

BASIC calls for input by a subroutine at $A357, which itself calls another
subroutine at $A386 — the actual call for input through the input vector. The
masking is in the first subroutine, $A357. The routine which follows thus ‘throws
away’ these two subroutine levels as soon as it is called, and then does their work of
collecting a BASIC line and placing itin the input buffer before returning to BASIC.

Itis shown here as if typed in with CEGMON’s monitor, starting at $0240, each line
being followed by its mnemonic and comment.

To use the routine from BASIC, two POKEs are needed. POKE 536, 64: POKE 537, 2
points the input vector to this routine, while POKE 536, 70: POKE 537, 251 returns
input back to the normal routine.

15

024024
0241-24
024224
024724
0247724
024A-24
024B- 24
024024
025024
025324
025524
0258- 24
025A- 24
025C.~24
025F - 24
0261 -24
026324
026524
026724
026924
026B- 24
N26D- 24
026F - 24
027124
027324
027S-24
027724
0279724
027A~ 24
D270 24
027F - 24
028224
0284 - 24
028624
028824

- e

mul

. Rg

D N N) I T
S0 0B D

10.082
20,E5, A%
20,6, A%
RZ. 00
20,46,FB
£9.01
30.F9
20.99.A2
Co.0b
Fo.1C
CS. 0A
Do, 04
EQ. 00
F9.EA
£9,40
F0.DE
C9,5F
F0,D4
ED. 47
B0, OB
95,13

E3
20,ES.A2
Lo.De
42, 66, A8
A9. 07
EO.FE
F0.C5
DO, EF

Z.02

:PLRA
;PLA
:PLR
:PLA
s JMP
:JER
;DEX
:BPL
ISR
;JSR
SLDK
:JER
;CMP
JBCC
;ISR
;CMP
;BERQ
;CHMP
;BNE
;CPX
;BER
:Chp
:BER
;CHMP
:BEQ
SCPX
:BCS
;8TR
JINK
;JSR
;BNE
; JMpP
;LDA
SCPX
:BER
;BNE

- byerass ane RTS call

= byepass second RTS call

to start of loop

$ARES - for backsrace here

- decrement char-count atfter backspace
+3 — to get new char if count not zero
$ABES —- for @ line-delete

$R3EC - for CR-LF

#%00 - reset char counter

$FB4E - get char from keyboard or ACIA
#$01 - to mask off nulls from tare

-7 = 9et another char 1f null

$AZII3 - check for ctrl-0

#$00 - carriage—return’?

+28 - exit it CR

#$0A - line—feed?

+4 - skir next check it not LF

#3$00 - first char in line?

~22 - if ves, ignore; I8t ney char
#3540 - @

~34 - do line-delete it @

#$5F - backszpace

-44 - if ves, do backsrace

#$47 - char count exceeds buffer?

+11 - ckip store—1n-buffer it full
$13.X - else store in BRASIC line buffer
= increment char countep

$ABES ~ print the char

-42 - alwavye Jjump, to 9et new rchar
$A3GE - do CR-LF, exit to BRSIC

#$07 - the “bell” char

#$FE - check char count not too great!
=57 - if ves, cancel line

-17 - else inc. counter. print “bell”

Non-halting ‘GET’from the keyboard

CEGMON’s keyboard routine will wait until a key is pressed before returning with
its value; but there are many cases where this halt is a nuisance — such as in real-
time games or in foreground/background work. The BASIC routine below copies
the first part of the keyboard routine into page-2 memory, and then modifies it to
bypass the halt, delay and auto-repeat loops. When called by a USR(X) statement in
BASIC, itreturns the ASCHl value — or a null if no key was pressed — to BASIC via its

INVAR routine at $AFCT.

Once loaded, the loader can be deleted by NEW; the ‘GET’ routine is unaffected
by a BASIC cold-start, but the two POKEs to set up the USR call (in line 100) would

16

have to be replaced. Lines 200 to 220 give a very brief example of the routine’s syntax
and use.

10 FOR X=1 TO 20:M=PEEK(&4767+X) :POKE ¢SPS+X),M:NEXT
20 FOR »=1 TO 3:READ M:POKE (633+X).M:NEXT

30 DATA 7e,203,253 :REM - JnP $FDDN
40 FOR X=1 TO 15:READ M:POKECE55+X),M:NEXT
50 DATA 141.19,2Z {REM - STR #0212
60 DATA 76,110,253 :REM - JMP $FD6E
70 DRTA 32.64.2 tREM - JSR $0240
380 DATA 168,1689.0 {REM - TAY, LDA #$01

90 DATR 76,193,175 {REM — JMP $RFC1
100 POKE 11,1S0:POKE 12,2

200 P=USR(X3:IF P THEN P$=CHR$<P):G0TD 220
210 PRINT, "Nothina" :G0TO 200

220 PRINTP$. ., "Something" :50T0 200

TRACE for BASIC

In debugging BASIC programs it’s useful to know what statements are being
executed when, or even executed at all. A ‘trace’ routine can sometimes helpin this.
Since BASIC checks betwzen each statement for a CTRL-C break, the following
routine uses the CTRL-C vector to print out the current line number before the check
is made. When this ‘trace’ is turned on, BASIC prints out ‘IN (line number)’ between
each statement.

A couple of points should be noted. One is that the routine can only beturned on
by a single POKE — otherwise BASIC would become ‘lost’ between the two POKEs
— and thus only the high-order part of the vector address is changed. If you move
the routine from its location here — so that it can co-reside with the BASIC ‘GET’
above, for example — it must start in memory with its low-order address byte the
same as that of the CTRL-C routine in CEGMON, at $xx94.

The other point is that the ‘trace’ will print out every line number itsees. In aten-
thousand FOR:NEXT timing loop, it will print that line number ten thousand times
— though the line number of the NEXT will only appear when the last loop is done.
In these cases, other line numbers will be ‘buried’ in amongst the mass of the loop
number; so turn the ‘trace’ off with a POKE 541, 251 before entering these loops, and
turn it on again afterwards. The ‘trace’ also takes an appreciable time for each line
number, and should not be used where timings are critical.

10 FOR X=erx0 TO é63: READ R: POKE X.R: NEXT

20 DATA 169.255 i REM — LDR #$FF

I0 DATA 133, 35 ! REM ~ STR $5F - set “tupe’ flag

40 DATA 32, 23,185: PEM - JSF $B953 - print “IM <line no.)”
50 DRTA 7E.143,251: REM ~ IMP $FB94 — do ctrl~" check: exit
&) REM

70 FEM — POKE 341.2 turne trace ON

30 REM - POKE 541,251 turns trace OFF

30 REM

100 NEW

17

BASIC ‘plot’ routine

OSI’s BASIC does not have a ‘PRINT AT’ statement; but CEGMON’s cursor-controls
make simple X/Y plotting practicable without complex POKE calculations. The
following BASIC subroutine is for a C2’s 32 X 64 display, assuming 28 printable lines
and a centre-zero for the axes. Note the POKE 14, 0 in line 10020: it zeroes the
‘current character count’, to prevent BASIC from issuing a CR/LF each time the
count goes past its ‘terminal width’ value. The routine presumes that the X and Y
values and the plotting character P$ have been defined elsewhere. A faster way of
handling the same problem would be to define two strings, one of 28 line-feeds (Y$)
and one of 64 cursor-rights (X$), and print the correct number with a LEFT$(Y$,Y)
and LEFT$(X$,X) call.

10000 PRPINT CHP$OLZM:

10010 FOR AY=0 TO ¢14-(14=Y23:PRINT CHR$C10% : NEXT
10020 POKE L4940

10030 FOR AX=0 TO (3240 :PRINT CHR$C11D: NEXT
10040 PRINT P¥:

10050 RETURN

Changing ‘windows’

The short demonstration program below should give some ideas on how to change
‘windows’, to allow several lines to be PRINTed without scrolling the screen. The
DATA lines within the program are those for all but standard Superboard/C1
systems; the DATA lines for these are below the main listing.

A simple way of finding the right values to POKE into the ‘window’-table is to PEEK
the edit-cursor position. Like the screen-handler, the edit-cursor is moved on a line-
by-line basis, with a displacement stored elsewhere. PEEK(562) gives the high-order
address of the cursor, while PEEK(561) +PEEK(559) gives its true low-order address.

10 FOR X=0 TO 2:FOR ¥=0 TO 4:READ A:WICX.YI=AINEXT Y.X
20 DATA 25,72,210,200,210

30 DATA 16,75,211.,203.211

40 DATA 25.132.2039.8.210

S0 PRINT CHR$(26);

&) W=0;G0sUB 500

?0 PRINT (1} o~ sl ”~ N N A AN
20 PRINT "-9 -6 =3 0 +3 +6 +9";
90 W=1: GOSUB S00

109 PRINT "Damping

110 PRINT "ot oscillation®:

120 W=2:50SUB 300

130 AY=10:BY=1:5T=-1:GOSUB 300
140 W=1: 305U S00

150 PRINT “"Exepanding

1560 PRINT "oscillation":

170 W=2:603UB 500

120 Av={:Bv=10:5T=1:G0SUE 300
130 5070 50

18

299
0
Zin
20
330
340
431
So0
S10
520

FEM #4¥ Graprh—rrint subroutine
FOR Y=AY TO BY STEP ST

FOR ¥=0 TO 6,2 3TEP .2

FRINT TABCLI+(YRSINCK 1 s

NEAT H.Y

RETLRN

REM #%% ()] pdow—change subroutine

FOR =0 TO 4:POKE S4e+4X. WICW, X0 i NERT

PRIMT CHR${3IN);
RETURN

20 DATA 25, 1en, 209,228,209
S0 DATAH 16,72.210, 148 41(
40 DRTR 25.70.293.134,209

19

